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Abstract

We introduce a versatile class of point processes on the

real line, which are closely releled to finite-state Markov

processes. Many relevant probability distributions, moment and

correlation formulas are given in forms which are computationally

tractable. Several point processes, such as renewal processes of

phase type, Markov-modulated Poisson processes and certain semi-

Markov point processes appear as particular cases. The

treatment of a substantial number of existing probability models

can be generalized in a systematic manner to arrival processes

of the type discussed in this paper.

Several qualitative features of point processes, such as

certain types of fluctuations, grouping, interruptions and the

inhibition of arrivals by bunch inputs can be modelled in a way

which remains computationally tractable.
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1. Introduction

While the general theory of point processes on the real

line has seen major developments during the recent years, the

cases where analytically or algorithmically tractable results

are obtained remain intimately related to an underlying Markovian

assumption. Stochastic models which require as few as two

general renewal processes t1o be considered are in most cases

intractable. Standard constructions, such as the superposition

of two renewal processes, destroy the regenerative properties to

such an extent, that an exact, non-asymptotic analysis of the

model becomes very difficult, if not impossible.

This problem has arisen early in a variety of practical

situations. Notably in communications engineering, a variety of

techniques have been developed by which a complicated point

process is replaced by a simpler one. The latter does not share

the complex probability structure of the former, but exhibits

certain qualitative features of it and a few lower order moments

can usually be matched by adjustment of parameters, so thit the

two processes are at least macroscopically very similar. A

survey of such techniques may be found e.g. in L. Kosten [4".

In this paper, we shall discuss a versatile class of poinL

processes which is closely related to finite Markov processes. Its

theoretical analysis is therefore elementary and its relation to

finite systems of differential equations guarantees that, at least

for a wide range of parameter values, the resulting equations may

readily be solved numerically.

We shall give a general deLi-'ption of the point process in
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Section 3. It involves a very large number of parameters, but

in any given application most of these can be eliminated or

assigned simple values, depending on the qualitative features of

the point process which the user wishes to bring forth in the

model.

A crucial underlying notion is that of a probability

distribution of phase type (PH-distribution), investigated in

[8-12). The next section reviews the definition and key properties

of PH-distributions.

2. The PH-distributions

We shall only review the continuous PH-distributions on [0,-),

bearing in mind that there Is an entirely analogous development

for discrete PH-distributions, derived from the theory of finite

Markov chains. All the definitions and derivations in this paper

may therefore be modified to define a point process on the discrete

time lattice.

Consider an (m+l)-state Markov process with m transient states

and one absorbing state. Its infinitesimal generator Q is then of

the form

T To

Q - , (1)
0 0

where T is an mxm matrix, with TO<O, TijO, for ifj and such that

T 1 exists. The vector T* has nonnegative entries and satisfies

Te+T*=O, where e=(, ...,l)'. A vector (E, a m+l) of initial

probabilities is also given and satisfies ae+a m+l=1, Oam+l<l.

The pobability distribution F(.) of the time till absorptioni in the state m+l is thpn given by
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F(x)=1-aexp(Tx)e, for x 0. (2)

The pair (2,T) is called a representation of F(,) and any

probability distribution F(.) which can be so constructed is a

PH-distribution. In this paper, we may assume without loss of

generality that am+l=0, so that F(.) does not have a jump at 0.

We further consider the matrices TO with T~j=TO and AO with

A°=diag(al,...,am). The Markov process with the infinitesimal

generator

Q*=T+TOAO, (3)

is now of considerable importance. We may always assume that C*

is irreducible, if necessary after deletion of superfluous states

from the chain Q. The matrix Q* describes the Markov chain,

obtained by resetting the original chain instantaneously using

the same initial probabilities, whenever an absorption into the

state m+l occurs.

The stationary probability vector i of Q* is obtained by

solving the equations LQ*=O, e=l. The times of absorption (and

resetting) are readily seen to form a renewal process with the

underlying probability distribution F(.). A renewal process in

which the interrenewal times have a PH-distribution is called

a PH-renewal process (12].

We refer the reader to the cited references for the closure

properties of the class of PH-distribution. For use in the sequel,

we need the following. The mean of the distribution F(.) is

j=-aT'I e, and the probability distribution F*(x)=(ui)' l X[l-F(u)]du,
0

x 0, is also of phase type and its representation is (!.,T).
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Moreover the stationary version of a PH-renewal process is

obtained by starting the Markov process Q* with the initial

probability vector w.

We shall now use the Markov chain Q* as a substratum for the

definition of the point process of interest. A transition from

the state i to the state J, which does not involve a renewal

(i.e. no visit to the "instantaneous" state m+l) will be called

an (i,j)-transition. We recall that in a Markov process,

transitions from a state to itself are not considered, so that we

only have (i,j)-transitions for itj. A transition from i to J,

which involves a renewal, will be called an (i,j)-renewal transition.

Such transitions which, rigorously defined, go from I to the

instantaneous state m+l and thence to J, may go from a state to

itself. Whenever the process is in state i at time t, an (i,j)-

renewal transition occurs with the elementary probability Tajdt.

3. The Point Process

For reasons, which will be apparent in the examples of applied

interest, we shall allow each of the events in the process to be

multiple and we shall use the intuitively appealing terminology of

group arrivals. There are three different types of arrival epochs,

for which we now define appropriate notation:

a. During any sojourn time of the Markov process Q* in the

state i, 15i~m, there are Poisson arrivals of rate Xi and

group size density {pi(k), k O}. We shall denote the

probability generating function of {pi(k)} by *1 (z) and we

may assume without loss of generality that ¢i(O)=O, for Isism.

If there are no arrivals of the other types, the doubly
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stochastic Poisson process [2] so obtained is called the

Markov-modulated Poisson process.

b. At (t,j)-renewal transitions, there are group arrivals with

probability density {rtj(k), k!O}. The generating function

of the density {rtM(k)} is denoted by $ja(Z), for li,j~m.

The matrix i0t(z)) is denoted by o(z) and we do allow

0 (0) to be positive for same (i,J).

c. At (l,j)-transitions, there are group arrivals with

probability densit {qij(k), k O}. The generating function

of the density (qtj(k)} is denoted by tjj(z), for ij. We

shall fin4 it convenient to define vT1 (z)-l, for lSitm.

The matrix f{vt(z)} is denoted by v(z). We do allow some

of the iTj(O), i~j, to be positive.

We now make the following independence assumptions. For every

t>O, given the path function of the Markov process Q*, the epochs

of the first type of arrivals are conditionally independent,

given the successive sojourn times and behave as a homogeneous

Poisson process on every sojourn interval. Given the times and

types of the arrival epochs up to time t, the group sizes are

conditionally independent and have the probability densities,

given above.

By N(t) and J(t), tjO, we denote respectively the number of

arrivals in (O,tJ and the state of the Markov process Q*. It is

then easy to see that the process {N(t), J(t), ttO} is a Markov

process with the state space {kkO)x{l,...,nm}.

The probabilities P1j(vt)-P{N(t)uv, J(t)-iJN(O)uO, J(O)-i)

l i,jjm, are of considerable interest. We derive a recursive



system of differential equations for the matrices P(v,t)z

(Pi~v~)),for vZO.

The Chapman-Kolmogorov equations for the process

{N(t)s 3(t)s ttOl may be written as

m V m V
h z k i~kO) jq (v-k)+ E ~ i(k~t)T~sjrhj(v-k),

ha k 1n ltTh hal k=O
h~j

for l~i,j~m and vaO. In matrix notation$ we have

P1g(~~-~~)() E P(k~t)A(')E2.(v-k)(6)
kWO

V V
+ E P(kst)[Toq(v-k)]+ E P(k,t)[TOAOor(v-k)',
k-0 k-0

where A(A)udiag(Al9O*Gjim )# A[2(T))udiag(p1(T),....pm(T)), for

TtO. The matrix q(r) has entries qj(T), for T O and i~j, but

qii(T)TO$for Tto. The matrix r(T) has entries rj (T), for TtO.

The symbol * denotes the Schur or entry-wise-Droduct of two

matrices.

The matrix-generating function P(z,t)- r P(v,t)zv, defined
vXO

for jzI'~l, satisfies the differential equation

i O~~) zt{AA)A.)Aiz]TTz+O~oz (6)

with the initial condition P(z,O)*I. It follows that

where R(Z)=A(ijA(j(z)J-A(X)+ToY(z)+TOAoo(z).
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We see that 7(l)=l(1)=E, where E i=l , so that P(l,t)=exp(Q*t),
as is to be expected. rhe explicit expression (M) for P(z,t)is also the direct generalization of the formula P(zt)=exp[-,t(1-zT]
for the ordinary Poisson process.

A. The Mean Matrix

By differentiating with respect to z in (7) and setting z-l,
we obtain the matrix

MMt) P~~ n n-1M rt) L Z.1 *l r, tn Q*vR,(1)Q*n-l-v 
(8)

where

R' ( )-A(_oy) +T C *AD, 
(9)

with Yk.(1-), C(1.), and D-'(l-).

We shall first compute the vector i(t)uM(tqe, which plays animportant role in applications. From (8) we obtain
U

pL(t). tn Q*n-'R.(1)e.nil QnT 
(10)

and in (12) we proved that

tn Q~n-1. texp(Q*u)du.nt+[Imexp(Qt)](T*,-Q).In n- n 
(11)

where T* is any real number such that T*>max( .id1, and I is theIf mxm stochastic matrix with identical rows given by

It follows that
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(t)=*et+(I)(*n-Q*'lV(l)e +

(R-exp(Q*t)](T*-Q*)-lR'(l)e, (12)

where *-*uR'(l)e.

We see that wy(t)=V*t, and that the first two terms in (12)

give the linear asymptote of p(t), since the third term tends to

zero as t-.. It is advisable therefore to compute the third term

separately. Denoting it by v(t), it may be evaluated by solving

the system of differential equations

v'(t)=Q*V(t), V(O)-(H-I)(T*H-Q*)IR,(1)e. (13)

It should be emphasized that in many applications of the present

point process, the approach to steady-state is slow.

The second term in (12) will be denoted by y and is given by

e(*R-Q*) 1R'(1)e-i*T*_Ie. (14)

The linear asymptote of EN(t)-Ou (t), corresponding to the

case where the PH-renewal process is an ordinary PH-renewal

process is clearly given by

We shall now discuss the computation of the matrix M(t) and

its asymptotic behavior. It readily follows from Formula (8), that

M'(t)-M(t)Q*=exp(Q*t)R'(1), (15)

with M(O)=O, so that

M(t)=f texp(Q*u)R'(l)exp[Q*(t-u)]du. (16)
0
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Adding T*M(t)R=T*A[M(t)e]R, to both sides of Equation (15)

and evaluating the Laplace transform of both sides of the

resulting equation, we obtain

M(s)-(sI-Q*)- R'(l)(sI+T*I-Q*) -+A(A(s)e]T*n(sI+C*H-Q*) "-1 (,7)

in which M(s)=f e -StM(t)dt. Since we know from the theory of
0

regenerative processes, that lim t'M(t) exists, this limit may~t -

be found by evaluating lim sM(s). We so obtain
, s O+

lim t IM(t)-P*T*H(T*n-Q*)'l-P*n. (18)

By considering the differential equation obtained from (15)

for the matrix M(t)-P*nt, we obtain the constant term in the

asymptotic formula for M(t), since
11m [M(t)-p*nt]=nR'(1)(T*ff-Q*}'I-P*T*'Iff+A(V)g

unR'(1)(T*H-Q*) 1I+(T*R-Q*)'IR'(1)H-2u*T*"IR. (19)

It follows that

M(t)-RR'(1)(T*]-Q*)l+(T*H-Q*)'IR'(1)n-2p*T*'ln+v*nt+o()1) (20)

as t-.

In computing M(t) numerically, it is again advisable to modify

Equation (15) to the equation for the difference K(t) between

M(t) and its linear asymptote. We so obtain

K'(t)-K(t)Q*=exp(Q*t)R'(1)+nR'(l)(*n-Q*)'lQ*-U*u

=[exp(Q*t)-njR'(1), (21)
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where K(O) equals minus the constant term :n Formula (20).

B. The Second Moment Matrix

By differentiating twice with respect to z in Formula (7)

and setting z-l, we obtain the second factorial momentmatrix

M2 (t). wnich is given by

M2 (t)- E t E Q*vR"() Q*nlv +
n=l n7 vO

; t. n-2 v
2 E r Q*rR' ()Q*vrR'(l)Q* n-2-v. (22)
n=2 n1 v=O r=O

The matrix M2(t) can be discussed in an entirely analogous manner

as the matrix M(t), but the resulting expressions are much more

involved. We shall only discuss the vector P2(t)uM 2(t)e, which

is needed in the computation of the variance of the number of

arrivals in (O,t).

We have

_2() I:tn Qn'I (1)+2 I tnn-2
c " n-l l 2 7 tn -2 Q*rR'(l)Q*n' 2"rR'(1)e (23)

nl ni n=2 W57 r:O

The first term is given by

jjte+[I-exp(Q*t)](T*II-Q*)' IR"(I)e, (24)

where )e, by application of Formula (11).

In order to evaluate the second term, we notice that

n-2E+ t n Q*r R'(1)Q* n'2'v(T*RI-Q*)
n-2 T r-O

" " n-2

~ n Q*n-2Rn.(l)H n-=T E tn nR!()- E tn E r R()Q*
n=2 n!n=2 ! r=O



=-M(t)+ z t'n Q*fl-iRI(l)+T* E tn Q*n- 2 RI )r

nlI ii! n=2 n1

By repeated application of Formula ('H), we obtain that

n . Q*rRS(l)Q*n-2-v.M(t)(T*lQ*)l+lv*t -
n=2 nI rz0

Upon substitution in Formula (23), we obtain

--(2u~M(t)(T*R-Q*) RI(leI *te+pte (25)

+2(r*1I-Q*) R' (1 )(T*H-Q*) R' (1 )e*

By using Formula (20), we obtain the following asymptotic

expansion for 1P 2(t) as t+-.

P2t 1etP+2fvR*(T* l-*) R (1 )e 1 (26)

II
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We also have that

!R2 (t)
= * t 2+ t2 2 l t+2twR(l)(T*H-Q*)'R(l)et

-21R'(l)[I-exp(Q*t)](T*T1-Q*)- 2R'(1)e. (27)

Remarks

Although the preceding formulas are complicated, they are

well-suited for numerical computation, as they involve a small

number of vectors which need to be evaluated only once. In the

few examples where these coefficient vectors may be explicitly

evaluated, they expand into very complicated algebraic functions

of the moments of F(.) and the group size densities. We shall

illustrate this below by an example, which is of particular interest.

If one wishes to compute the vectors pl(t) and P2 (t) over an

interval [O,T], it is advisable to implement a numerical method

for the solution of systems of differential equations to

evaluate the three items p1 (t), M(t) and R2 (t) for t-nA, for

successive values of n and for a step A. In this manner exp(Q*t)

needs to be evaluated only once and can be substituted in all the

formulas where it occurs.

It is also worth stressing that one can frequently avoid

computing the matrix M(t). In order e.g. to compute the variance

time curve corresponding to the ordinary PH-renewal process, we

need to evaluate ap(t) and cP2 (t). It is easy to see that the

formula for aqP2(t) only involves the vector z(t)=cM(t), which can

be computed by solving the differential equations

z'(t)-i(t)Q*=aexp(Q*t)R'(1),
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with z(O)=O. This involves far fewer arithmetic operations and

less storage then the computation of M(t).

From the mean and the second factorial moments, it is of

course a routine matter to compute the variances.

4. Examples

A. The Superposition of a Poisson Process and a PH-renewal Process

Kuczura (5] considers a queue whose input process is the

superposition of a Poisson and a renewal process, but in order

to obtain tractable transform solutions he imposed the require-

ment that the distribution of the Interrenewal times have a

rational Laplace-Stieltjes transform. This is only slightly

more general than requiring the renewal process to be of phase type.

We believe that there is practical merit to consider queues,

whose arrival process is the superposition of a Poisson process

(background input) and a PH-renewal process with group arrivals

(burst inputs). Such a process corresponds to a given matrix T

and vector a and the parameter choices A,=X, *i(z)=z, for liSm,

t(z)-p(z)E, T(z)-E, where p(z) is the probability generating

function of the group sizes in the renewal arrival process.

For this case, we shall evaluate the coefficient vectors

which appear in the formulas for pl(t) and P2 (t). We do not

recommend that these explicit formulas be used in numerical

computations, but we use them to illustrate the complicated

dependence of these coefficient vectors on the moments of F(.) and

the group size density. By particularizing further to the case

of an ordinary PH-renewal process, we shall also be able to check

our computations against known formulas for the asymptotic
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variance of a renewal process.

We obtain the particular formulas:

R'(l)=xl+iTOAO, ni~p'(l), (28)

R"(1 )'n2T0A0, 2P()

RI(1)1=Xe+n1 0, R"f(l )t"210

-lR E- w(l)=n2vp1 a.

The proof of the following three formulas requires some interesting

algebraic manipulations for PH-distributions. The first of these

formulas is proved below and the other two follow by similar

calculations.

(T*fl-Q*Y ITOMIJ1 jT-1 e+uiij1( T*-l+1 1j~e (29a)

(T*H-Q-)_ =?T -P-T-~ 1 )I e1 (2b

write_

(T*II-TTO)UTOxT- 101T-

orit

which leads to

U-T*(1Tu)Tl e+(l+au)e, (30)

since fTIT=-e. Recalling that pira~-se, premultiplication by a

in the preceding equation leads to ru
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Noting that -,T-le is the mean of F*(x)=ij'1fx[1-F(u)Jdu
10

-1 1 -
we readily obtain that irT e=-p i1  . Premultiplication by 1.

in (30) then yields that

and Formula (29a) follows upon substitution.

Routine, but tedious calculations now yield the following

explicit expressions for coefficient vectors appearing in

Formula (25).

R1(~tnlp" _ e[X*'+nlp1i 1(T*+ j ~ih )]e, (31a)

-I )t+nlv 1 jlI-exp(Q*t)JT- Ie, (31b)

M(t)(T*ll.* R 1 elpjM(t)T e +

CAT+nu 1  (Tr*'1+ IJjNt) (31c)

-2inpi np~je (31d)

f-1* HA~T* l 1 * g 1 21

e~n1,1(*+v 2 i1  )e, (31,F)

2 *l(T* 1+ I I

1 Iij C-T 2 e- I~ j IT_ I -
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2

-~T I- P 2 1I-

+2l 1 [-- e~ -11 -1,T2 1 e 1(3h

41+ 2 -1 I'3~ (31h

Substitution into Formula (25) does not produce any sub-

stantial cancellation of terms, other than that resulting from

[I-exp(Q*t))e=O. In order to check on the accuracy of our

derivations however, we substituted the expressions (31) into the

formula for ir 2 (t) and obtained

2,- 2 (t- )

(t)=(X+nj~u- ) t 2 ji1 +lj 2 11 3_ln 2.0 )t

1 2 j2 P-4 1 2 -I_3 (32)

If one sets nI, n2=O, and evaluates the variance Vare[N(t)]

of N(t) for the stationary process, one obtains in terms of the

central moments of F(.) that

Vare [N(t)]=(1+ 2P '3)t+6 1 4 -4 313I '

which is in agreement with Formula (18), p. 58 of Cox El].

B. The Markov-Modulated Poisson Process

If O(z)=T(z)=E, and oi(z)=z, for lsism, we obtain an

interesting example of a doubly stochastic Poisson process, which

was used as an arrival process in the queueing models, discussed

in [6], (13], [14] and [15]. Since in this case R'(1)-A(2),

and R"(1)=O, some minor simplifications occur in the general

moment formulas.
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The Markov-modulated Poisson process can be used to model a

large variety of qualitative phenomena, such as interruptions in

arrivals, rush-hour behavior and others. Heffes [3], in a

telephone engineering model, considered the interrupted Poisson

process in which arrivals occur on alternating, exponentially

distributed intervals. This corresponds to the particular choice

-a a 0T 0o

0 a2

I '
X Xlx, f1 (z)uz, X2'O, f2(z) arbitrary, o(z)=Y(z)- I

A more general, useful situation arses if we define an

interrupted Poisson process on an alternating renewal process of

phase type. Let the odd-and-even-numbered intervals have PH-

distributions Y.) and F2(.) with irreducible representations

(a,1 T1) and (22 , T2) of dimensions m1 and m2 respectively, then

a natural extension of the preceding example is given by

T1  TOAO 0

T 0 T 0~T2  4 -

i=X, Ci O,

0i(z)=z, for lsism I , #l(z) arbitrary for mIl+sism1 +m ,

0(z)=*(z)=E, with Eij=1.

In the expression for T, the square matrices TI and T2 are

of orders m and m2 respectively, A'=A(E 2) and T* is an mlxm 2

matrix, with all its columns equal to To. It is easily verified
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that the matrix Q*, which is given

T1  T

T;AO T2

has the stationary probability vector

where is the mean of Fk(.), k=l,2, and is given by

MO(T +T*Af)=O l ke-l for k-l,2.
] k k kk - rk--

Alternating periods of rush and slack arrivals can of course

be modelled by other choices of the Ai-parameters.

C. The Markov Arrival Process

If X=0, t(z)-zE, and vij(z)=z, for i#J, we obtain a

particular semi-Markovian arrival process in which the underlying

Markov renewal process is a Markov process.

By suitably enlarging the state space, any semi-Markov

arrival process in which the sojourn time distributions are of

phase type can in fact be obtained as a particular case of our

process by allowing arrivals at some (i,j)-transitions and not at

others. This is however rarely of practical interest in view of

the high order of the Q*-matrix, usually required by this

construction.

D. Arrivals Inhibited or Stimulated by Renewals

Prof. E. Gelenbe renewed our interest in the point processes,

discussed here, by describing practical queueing situations in

which e.g. substantial group arrivals at renewal epochs inhibit

I £
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background arrivals for a certain length of time after their

arrival. Although there are a variety of ways of modelling input

sequences of this type, it is not easy to do so in an analytically

or computationally tractable way. We can easily choose particular

cases of the present point process which can serve as tractable

qualitative models for such arrival streams.

A PH-distribution will be called progressive, if it has a

representation (c,T) in which the matrix T is upper triangular.

It is easy to see that a PH-distribution is progressive if and only

if it is a finite mixture of generalized Erlang distributions.

Every path function of the Markov process Q is then non-decreasing.

We can allow e.g. group arrivals at some or all of the (i,j)-

renewal transitions and select the A1-parameters of the states

close to renewals so as to model the inhibitory effect of the

group arrivals.

Although the statistical problems, related to fitting such

models to observational data, require much further research, the

ease with which the mean and variance time curves can be

computed for the point processes discussed here should be useful

in fitting sample mean and variance curves. Computer graphical

methods appear to be very promising for such purpose and are

currently being investigated.

5. The Covariance Structure

In this section we consider the covariance of the random

variables N(t) and N(t+tl+t')-N(t+tl), where t>O, tlO, t'>O, for

the stationary version of the underlying PH-renewal process. For

the non-stationary version similar, but more complicated formulas,
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are routinely obtained.

We readily see that

N(t) N(t+tl+t')-N(t+t 1 )
E{z1  z I[J(t+t +t')=JIa(O)=t},

is given by the (i,j)-entry of the matrix

exp[R(zl)tJexp(Q*tl)exp[R(z2 )t'J.

Differentiating with respect to z1 and with respect to z2,

setting zl=Z 2=l, we readily see that the covariance of N(t) and

N(t+tI+t')-N(t+t1 ) is given in the stationary case by

ECov-7..(t)exp(Q*t 1 )H(t'),t-p*tt'. (34)

Since M(t')e=ii(t') is given by Formula (12) and

+fR'(t)[t-exp(Q*t)](T*-Q*) " l (35)

and using the fact that (T*n-Q*)l and exp(Q*u) commute, we obtain

after routine calculations that

Cov-R'(1)[I-exp(Q*t)]exp(Q*tl)[Iexp(Q*t')](T*IgQ*) 2 RI(l)e. (36)

For the particular case of Example A, we obtain by applying

Formula (31g) that

2 -2 -2 1~ 1 (37)
Covs-n 21 [ I-exp(Q*t)jexp(Q*tl)[I-exp(Q*tl)](T e+Y-juV'T'e). (37)

We see that the numerical computation of the covariance is again

reduced to the solution of simple systems of differential equations.
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